
Summary!
Change detection using remote sensing has become increasingly 
important for characterization of natural disasters. Pre- and post-event 
LiDAR data can be used to identify and quantify changes. The main 
challenge consists of producing reliable change maps that are robust 
to differences in collection conditions, free of processing artifacts, and 
that take into account various sources of uncertainty such as different 
point densities, different acquisition geometries, georeferencing errors 
and geometric discrepancies.!
We present a novel technique that accounts for these sources of 
uncertainty, and enables the creation of statistically significant 
change detection maps. The technique makes use of Bayesian 
inference to estimate uncertainty maps from LiDAR point clouds. 
Incorporation of uncertainties enables a change detection that is 
robust to noise due to ranging, position and attitude errors, as well as 
"roughness" in vegetation scans. !
The validation of the method was done by use of small-scale models 
scanned with a terrestrial LiDAR in a laboratory setting. The method 
was then applied to two airborne collects of the Monterey Peninsula, 
California acquired in 2011 and 2012. The data have significantly 
different point densities (4 vs. 40 pts/m2) and some misregistration 
errors. A new point cloud registration technique was developed to 
correct systematic shifts due to GPS and INS errors. Sparse changes 
were detected and interpreted mostly as construction and natural 
landscape evolution.
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Change detection ingredients
➡ Bayesian Inference for parameter and error estimation!
➡ Gridding: compare DSM generated from point clouds (indep.)!
➡ Local polynomial surface model (linear in current implem.)!
➡ Kernel regression to infer model parameters !
➡ Empirical errors from local residuals !
➡ Heavy-tailed Student-t distributions for low point densities!
➡ Probabilistic comparison of local height distributions!
➡ Approximations to allow fast comparisons!
➡ Simple model to account for geometric errors!
➡ Preset significance levels for change detection!
➡ Intuitive visualization method
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Context:!
Remote Sensing for Improved Earthquake Response

NPS-DHS Project Page
www.nps.edu/Academics/Centers/RSC/Projects/Earthquake-Response-Project.html

Dataset description!
!
WSI!
!
• WSI for Naval Postgraduate School Monterey, CA!
• Collection date: 2012/10-2012/11!
• Scanner used: Optech ALTM Orion-C200!
• Flight parameters: 450 m AGL, 100% overlap, 60% sidelap!
• Scanning geometry: 66 kHz PRF, 30 deg FOV, sawtooth!
• Point density: 40-80 pts/m2 average!
• Posted accuracy: 7 cm vertical, 20 cm horizontal!
!
NOAA!
!
• Fugro EarthData, Inc. for the NOAA CA Coastal Conservancy Coastal Lidar Project!
• Collection date: 2009/10-2011/08!
• Scanner used: Leica ALS60 (oscillating mirror)!
• Flight parameters: 1800 m AGL, >50% overlap!
• Scanning geometry: 120 kHz PRF, sinusoidal!
• Point density: 5-8 pts/m2 average!
• Posted accuracy: 18 cm vertical, 50 cm horizontal!
!
AMBAG  [not used due to quality concerns]!
!
• Digital Mapping Inc. for the  Association of Monterey Bay Area Governments (AMBAG) !
• Collection date: before 2010/08!
• Scanner used: Optech ALTM Gemini (oscillating mirror)!
• Flight parameters: 1200 m AGL, 50% overlap!
• Scanning geometry: 100 kHz PRF, 40 Hz line scan, +-25 deg, sawtooth!
• Point density: 2-4 pts/m2 average!
• Posted accuracy: 23 cm vertical, 35 cm horizontal [underestimated]

Automatic dataset registration
➡ Bayesian Inference for 3D shift estimation!
➡ Simultaneous gridding of both datasets into the same DSM!
➡ Approximation 1 - Dirac marginalization!
➡ Approximation 2 - Density-weighted log variances!
➡ Approximation 3 - Piecewise constant shift!
➡ Nonlinear Conjugate Gradient optimization

Issues, Solutions, Future work
➡ Explicitly accounting for overlapping surfaces!
➡ Full 3D non-parametric modeling?!
➡ Preliminary surface filtering to avoid overlaps!
➡ Strip adjustment for IMU error reduction!
➡ Use of predictive uncertainty and handling missing data

Conclusions & Recommendations
➡ Point density  
     > 4 pts / grid cell (depends on target GSD)!
➡ Swath overlap  
     > 60% sidelap (>= 3 swaths in area of interest)!
➡ Sampling pattern  
     sampling distance should match footprint size (reduce aliasing)!
➡ Geometric quality  
     minimal inter-strip discrepancy, good IMU data!
➡ Raw discrete return data, if available  
     approx. predictive uncertainties (instead of empirical)!
➡ Raw waveform data, if available 
     rigorous predictive uncertainties (instead of empirical)

Model space

Point cloud

G(x, y) = e

�(x

2
+y

2
) log 2

G(x, y)
xG(x, y) yG(x, y)

x G(x,y) y G(x,y)

xy G(x,y)xx G(x,y) yy G(x,y)

ORDER 0
1 kernel

ORDER 1
3 kernels

ORDER 2
6 kernels

Kernel footprint at location (i,j)

locally constant

locally planar

locally paraboloidal

current location (i,j)
NONPARAMETRIC KERNEL REGRESSION

local fit
residuals uncertainty

on z at location (i,j)

Basis functions building blocks 
(before sampling)

local, non-orthogonal

empirical errors
allow for probabilistic comparison

X

k

G(xk, yk) zk
X

k

xk G(xk, yk) zk
X

k

yk G(xk, yk) zk

Principles of nonparametric kernel regression method. For each grid location a 4x4 grid cell patch is considered 
(footprint of the 2D B-spline 3 kernel function, approximated by a Gaussian kernel). Points outside have no 
influence on this location. A weighted linear regression is performed (order 1 in the implemented approach, 
order 2 for illustration only), the weighs being given by the kernel. The residuals from the local fit are used to 
compute the error estimate (standard deviation sigma). The quantity of interest is the probability distribution 
function (pdf) of the height.

2D experiment with synthetic data, illustrating the probabilistic 
nature of the proposed method. Two point clouds (red and 
blue) are gridded onto a common grid with a local linear 
model, and the inferred pdfs are represented as error bars 
computed from the Student-t distributions of the height 
(orange and purple). Heights can be compared when 
estimates from both point clouds are available, and relevant 
changes are detected according to their significance.  

Automatic point cloud registration experiment: synthetic point cloud data.!
Left: synthetic point cloud with smooth surface, building and changes. !
Right: non-quadratic behavior of the energy function to be minimized for two different areas of interest.

Test: automatic registration

Validation: terrestrial scans

Big Box cardboard model, original density, at 0.5 m GSD. Experimental gap-based surface model filtering 
used. Left: baseline, right: changes applied (manually). Notice the deformed bridge, open box (left side) and 
shifted box (bottom left corner). The vegetated area is real and did not suffer any changes. 

Big Box cardboard model, original density at 0.5 m GSD. Same color-coded shaded relief visualization as 
in the final results (below). Left: gap-based surface filtering not used. Right: filtering used, notice the 
deformed bridge in orange and less artifacts on the left box as only the top surface is selected. Some artifacts 
are due to the filtering method. Some of the detected changes are due to scan misalignment (each point 
cloud was collected by fusing two separate scans). 

Proba. change map visualization
Proposed color-coded shaded relief 
visualization and related color map. !
!
The shaded relief map helps locate the 
detected changes and uses the slope 
parameters from the highest resolution 
data. The hue represents the magnitude of 
the change (red for height loss, green for 
height gain in this example). The saturation 
decreases with increasing roughness, to 
help focus on flat (man-made) objects. The 
height differences are thresholded at 95% 
significance level (user-selected). !
The red and orange areas correspond to 
real temporary buildings, and removed 
trees or branches.

N
Gridded change map product: WSI-NOAA, NPS campus, 300 m x 300 m area, 1 m GSD

Gridding & significant differences 

Gridded height difference: WSI-NOAA at 1 m GSD (AMBAG dataset not used). !
Left: small changes, showing mostly geometric errors (aligned with swath coverage) and vegetation height 
variations. Right: large magnitude changes, thresholded using 95% significance level. Remaining changes 
are real - tree cutting, landscaping, temporary buildings, vehicles etc.

WSI tile 774, 1 m GSD.!
Left: gridded height. Right: point density. 

NOAA (cropped to WSI tile 774), 1 m GSD.!
Left: gridded height. Right: point density. 

AMBAG (cropped to WSI tile 774), 1 m GSD.!
Left: gridded height. Right: point density. 

Left: 95% confidence interval corresponding to the Student-t 
marginal distribution of the height. Right: estimated noise 
standard deviation sigma. The uncertainty is much lower than 2 
sigma due to the high point density. 

Left: 95% confidence interval corresponding to the Student-t 
marginal distribution of the height. Right: estimated noise 
standard deviation sigma. The uncertainty is much lower than 2 
sigma due to the high point density. 

Left: 95% confidence interval corresponding to the Student-t 
marginal distribution of the height. Right: estimated noise 
standard deviation sigma. The uncertainty is higher than 2 sigma 
due to the low point density and the heavy-tailed behavior of the 
Student-t distribution.
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